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Corrosive properties in experimental Ni-Cu-Mn-
based alloy systems for dental purposes

K. WAKASA, M. YAMAKI

School of Dentistry, Department of Dental Materials, Hiroshima University, 1-2-3 Kasumi,

Minami-Ku, Hiroshima, 734 Japan

Experimental Ni~Cu-Mn-based alloys containing additives were studied to find their corrosive
properties in tarnishing tests. The microstructural features revealed interdendritic areas with
small corroded regions. In 30Ni-30Cu-40Mn-based alloys which were respectively substituted
by aluminium, tin, aluminium and indium (Al-In), Al-Sn and Al-Sn-in the maximum rough-
ness values in the surface roughness curves ranged from 2.0 to 7.2 um. Each corrosion-
resistant alloy system which contained additive elements of Al-in, Al-Si, Ca-Si-C and P-Fe
had a smooth surface with a maximum roughness value of 0.8 to 2.0 um.

1. Introduction

Non-precious base-metal alloys should be able to
resist corrosion and tarnishing in the tarnishing test.
The resistance is an important parameter when choos-
ing base-metal alloys for dental applications. In vitro
corrosion and tarnishing of dental base-metal alloys
has been evaluated by a potentiostatic technique [1, 2]
and the colour-change vector [3-5]. The observations
from both in vivo and in vitro experiments support the
fact that copper sulphide was not generally assumed
to be the main corrosion product causing tarnishing in
noble-metal crown and bridge alloys [6, 7]. In the
alloys the copper-rich phase was observed by in vitro
tests to be significantly more resistant to corrosion and
tarnishing than was the silver-rich matrix [8]. The
beneficial effect of copper in Ni-Cu-Mn ternary alloys
has been demonstrated for tarnishing resistance [4].
The ternary Ni-Cu-Mn alloys had better castability
during dental casting [9], and the hardness ranged
approximately from 180 to 290 when the nickel con-
tents in the ternary alloys varied from 20 to 50 wt %
[10]. The solubilities of nickel and copper were exam-
ined when alloy elements were added to the ternary
alloys showing that lower solubilities of nickel and
copper were obtained [11]. The corrosivity of ternary
Ni-Cu-Mn alloys and the improved alloys containing
alloying elements has to be clarified from the view-
point of the microstructural features of the alloys.
The aim of this work was therefore to examine the cor-
rosive properties of microstructure in experimental
Ni—-Cu-Mn-based alloys.

2. Materials and methods

Five experimental alloys were made by vacuum-
melting the individual elements: 20 wt % Ni—40 wt %
Cu—40wt % Mn (alloy 1, melting temperature 970° C),
30Ni-30Cu-40Mn (alloy 2, 1000°C), 30Ni-40Cu--
30Mn (alloy 3, 1050° C), 40Ni~-30Cu-30Mn (alloy 4,
1075°C) and SONi-30Cu~20Mn (alloy 5, 1160°C).
The alloy compositions and designations were the
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same as those reported in previous studies {4, 10, 12].
One alloy, which was a 30Ni-30Cu-40Mn-based
alloy, was melted with Swt% aluminium, 5wt%
aluminium and 5wt % tin (denoted as 5Al-58n),
Swt % aluminium, 0.1 wt % indium and 4.9wt % tin
(5A1-0.1In-4.98n), 5A1-2.5In-2.58n, 5A1-4.9In-0.1Sn
and SAI-5In by substituting their alloy elements to
manganese content (Table I). The commercial Ni-Cr-
based alloy as a control material (Fittloy 50 Type 1,
Sankin Ind., Tokyo; control, melting temperature
965° C) was typical for low-fusing casting alloys of this
kind on the market in Japan. As additional materials
which have previously been reported [11], three of the
ternary Ni-Cu-Mn alloys (alloys 1, 4 and 5) were
melted by adding alloying clements such as 5Al-5In,
denoted as Al-In, Al-Si as a compound additive,
Ca-Si-C (compound) and P-Fe (compound) to their
alloys by 10wt %. These alloys are denoted as alloy
systems 1, 4 and 5 in this study, as used previously
(1, 18Ni-36Cu-36Mn-10wt % additive; 4, 36Ni-
27Cu-27Mn-10 wt % additive; 5, 45Ni-27Cu-18Mn-
10wt % additive) [11].

The materials investigated were examined for both
surface roughness after immersion in the solutions
and their microstructural characteristics by means of
optical and electron microscopy. The tarnishing tests
in 0.05% HCI (pH 2.0) and 0.1% sodium sulphide
solution (pH 12.0) were done at 37 + 1°C[13, 15, 16].
After immersing the specimens (I5mm x 20mm x
2.5mm), which were cast reported in [4], into the
tarnishing solutions (1% lactic acid, pH 2.3; Ringer’s
solution, pH 6.7 and artificial saliva, pH 11.2) the
maximum roughness was evaluated from surface
roughness curves (Kosaka Lab., Tokyo, Japan) using
the solutions measured in nickel and copper solu-
bilities [11, 13-16]. The colour-change vector was not
determined in this study, because the ternary Ni-Cu-
Mn alloys had better tarnishing-resistance [4]. Thus,
the microstructural changes in the tarnishing tests
were examined, especially for the corroded structure.
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Figure 1 Microstructures of a control material when immersed in 0.05% HCI solution for (a) 1, (b) 2 and (c) 3 days.

3. Results

The microstructural observations of the tarnished
alloys in 0.05% HCI solution are shown in Fig. 1 (a
control material immersed for 1, 2 and 3 days in the
solution) and Fig. 2 (six experimental 30Ni-30Cu-
40Mn-based alloys immersed for 3 days in 0.05%
HCI). The specific phase was attacked gradually with
a dark shade in Fig. 1, whereas the experimental alloys
were selectively corroded at interdendritic areas
(Fig. 2), Lightly corroded areas were observed for the
experimental alloys when immersed in 0.1% sodium
sulphide (Fig. 3). The 30Ni-30Cu~40Mn-based alloys
containing 5A1-0.1In-4.9Sn, 5Al1-2.5In-2.5Sn and
5A1-4.9In-0.1Sn as additive elements were partially
corroded at the interdendritic regions when immersed
in 0.05% HCI (Fig. 4). Each mapping image in the alloy
systems which were immersed for 3 days in 1% lactic
acid showed segregation of each additive element at
interdendrite area, revealing in secondary electron
imaging that the interdendritic area was corroded

(Figs 5 to 7). The maximum roughness in ternary
Ni-Cu-Mn alloys and a control material ranged
approximately from 5 to 17 um (Table I). The 30Ni-
30Cu—40Mn-based alloys showed maximum rough-
ness values ranging from 2.0 to 7.2um for those
immersed in 0.05% HCI solution (Table II). In Tables
IIT to V the maximum roughness values calculated
from surface roughness curves of the tarnished alloy
systems are given. The addition of alloying elements to
the ternary alloys gave a decrease in the values of the
tarnished surface roughness due to the tarnishing test,
and the values when immersed in 1% lactic acid were
smaller than those in the control material.

4. Discussion

The microstructures in ternary Ni-Cu—Mn alloys were
different for 20Ni-40Cu-40Mn and 30Ni-30Cu-
40Mn (dendrite structure), and the other alloys
(cellular structure) [12]. The ternary 30Ni-30Cu-
40Mn alloy was the second strongest material among

Figure 2 Microstructures of experimental Ni-Cu-Mn-based alloys when immersed for 3 days in 0.05% HCl solution. (a) 30Ni-30Cu-35Mn-
5Al, (b) 30Ni-30Cu-30Mn-10Al, (c) 30Ni-30Cu-35Mn-58n, (d) 30Ni-30Cu-30Mn-10Sn, (¢) 30Ni-30Cu-30Mn-5Al-5In and (f) 30Ni-

30Cu-30Mn-5A1-58n.
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Figure 3 The observed results for the Ni~Cu~Mn-based alloys in 0.1% sodium sulphide (3 days immersion). (for key, see Fig. 2.)

the five ternary alloys in tensile test [10]. The 30Ni-
30Cu-40Mn-based alloy containing, respectively,
aluminium, tin, Al-In and Al-Sn showed corrosivity
at interdendritic areas (Fig. 2). By electron micro-
scopy (Figs 5 to 7) it could be seen that the alloy
systems containing additive elements were selectively
corroded, and the corroded areas corresponded to the
interdendritic region. Visual inspection in a com-
mercial nickel-based alloy, which was immersed in
0.05% HCl solution, showed clearly that the corroded
area was attacked locally over the grains (Fig. 1). The
tarnishing tests (0.05% HCI and 0.1% sodium sul-
phide solutions) clarified the finding of locally cor-
roded areas in experimental Ni-Cu-Mn-based alloys
(Figs 2 to 4).

These alloys had small surface roughness values (2.0
to 7.2 um) over the corroded surface (Table II). A
decrease in the surface roughness was obtained for
alloys containing additive elements compared with the
maximum roughness in ternary Ni-Cu-Mn alloys

when immersed in 1% lactic acid (Tables I and ITI).
The quantitative appearance of corroded specimens
subjected to tarnishing-testing due to 1% lactic acid
was different, showing that the maximum roughness
value ranged from 0.8 to 2.0 um in improved Ni-Cu-—
Mn-based alloys containing alloying additives such as
Al-In, Al-Si, Ca-Si-C and P-Fe. These maximum
roughness values in the surface roughness curves cor-
related well with the corrosivity in the interdendritic
region. This observation was also found for low-gold
Ag-Pd-Cu-Zn alloys which showed corroded inter-
dendritic positions such as both Pd—Cu-Zn-rich com-
pound particles and silver-rich phase [7, 8, 17].

In the low-gold alloys, the corrosion and the tar-
nishing seem to have taken place predominantly in
areas of local galvanic cells between the anode (silver-
rich phase) and the cathode (Pd-Cu-~Zn-rich particles)
[8]. This study showed that the improved Ni~Cu-Mn
alloy systems had corroded interdendritic areas and
their areas corresponded to the segregated positions

Figure 4 Microstructures in experimental Ni-Cu-Mn-based alloys (3 days, 0.05% HCI). (a) 30Ni-30Cu-30Mn-5A1-0.1In-4.9Sn,
(b) 30Ni-30Cu-~30Mn-5A1-2.5In-2.55n and (c) 30Ni-30Cu-30Mn-5A1-4.9In-0.18n.
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Figure 5 Electron microscopy in alloy system 1 containing additive Al-Si (3 days, 1% lactic acid). (a) Secondary electron image, (b) nickel-,
(c) copper-, (d) manganese-, (¢) aluminium- and (f) silicon-mapping images.

(Figs 5 to 7). When alloying elements were added to
the ternary alloys, additive elements such as silicon,
indium and phosphorus segregated in the inter-
dendritic area of the Ni-Cu-Mn-based alloys. As
microgalvanic cells could be formed over short dis-
tances, the existence of the interdendritic region would
be important in this study. It was not deduced which
was the cathodic or anodic site, but the finding of a

TABLE 1 Maximum roughness calculated from surface rough-
ness curves in ternary Ni-Cu-Mn alloys and a control material,
which were immersed for 3 days in 1% lactic acid

Material Maximum roughness (um)
20Ni-40Cu-40Mn 24 +£ 02
30Ni-30Cu~40Mn 10.8 + 0.4
30Ni~40Cu-30Mn 11.4 £ 0.3
40Ni-30Cu-30Mn 16.2 + 0.5
50Ni-30Cu-20Mn 168 + 04
Control 50 4+ 1.0

corroded interdendritic area would support the for-
mation of the sites. For the Ni-Cu-Mn-based alloy
systems, the best overall resistance to corrosion in the
tarnishing-testing was observed for the solutionized
conditions investigated. These alloy systems had
alloying additives such as Al-In, Al-Si, Ca-Si-C and

TABLE 1I The values of maximum roughness in each Ni-Cu-
Mn-based alloy containing aluminium, tin, Al-In, Al-Sn and Al-
In-Sn, which were immersed for 3 days in 0.05% HCI solution

Material Maximum roughness (um)
30Ni-30Cu-35Mn-5Al 42 + 0.1
30Ni-30Cu-30Mn-10Al 6.5+ 0.5
30Ni-30Cu-35Mn-5Sn 7.0 £ 03
30Ni-30Cu-30Mn-10Sn 72+ 02
30Ni-30Cu-30Mn-5A1-5In 20 + 02
30Ni-30Cu-30Mn-5A1-5Sn 34 + 04
30Ni-30Cu-30Mn-5A1-0.1In-4.9Sn 5.2 + 0.7
30Ni-30Cu-30Mn-5A1-2.5In-2.5Sn 6.8 + 0.6
30Ni-30Cu-30Mn-5A1-4.9In-0.1Sn 6.7 + 0.4
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Figure 6 Electron microscopy in alloy system 4 containing additive Al-In (3 days, 1% lactic acid). (a) Secondary electron image, (b) nickel-,
(c) copper-, (d) manganese-, (¢) aluminium- and (f) indium-mapping images.

P-Fe. Compared with the ternary Ni-Cu-Mn alloys,
the values of maximum roughness were very low, and
the greatest corrosion resistances were expected for
the improved Ni-Cu-Mn-based alloy systems; in their
microstructures, the interdendritic areas were impor-
tant to their corrosive properties.

These results support their application to the dental
field, indicating better corrosive resistance than the
conventional nickel-based alloy and ternary Ni-Cu-

TABLE III Maximum roughness (um) in experimental Ni-
Cu-Mn-based alloy systems immersed for 3 days in 1% lactic acid
(for key, see text)

TABLE IV Maximum roughness values (um) (3 days. Ringer’s
solution)

Alloy system  Additive element

Al-In Al-Si Ca-Si-C P-Fe
I 13 +£01 06403 I.1 £02 08+ 0.1
4 1.1 £01 08 +02 10+£03 0701
5 07 +£02 07401 18+02 12402

TABLE V Maximum roughness values (um) (3 days, artificial
saliva)

Alloy system  Additive element Alloy system  Additive element

Al-In Al-Si Ca-Si-C P-Fe Al-In Al-Si Ca-Si-C P-Fe
1 1.5+£02 08+01 134+03 09+0.1 1 l1+01 07401 16402 [.54+02
4 1.2+£02 09+02 12103 09+02 4 d+£01 20+01 14 + 0.1 1.3 £ 02
5 084+01 08+001 20+02 15+02 5 2401 08+02 07+01 1.0+02
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Figure 7 Electron microscopy in alloy system 5 containing P-Fe additive (3 days, 1% lactic acid). (a) Secondary electron image, (b) nickel-,

(c) copper-, (d) manganese-, (¢) phosphorus- and (f) iron-mapping images.

Mn

alloys. The experimental ternary Ni-Cu-Mn alloys

could be changed to dental alloy systems by minor
alloying additions.
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